Induction of Retinoic Acid Receptor-a by Granulocyte Macrophage Colony- stimulating Factor in Human Myeloid Leukemia Cell Lines
نویسندگان
چکیده
We reported previously that treatment with all-trans retinoic acid (ATRA) and granulocyte macrophage colony-stimulating factor (GMCSF) induces differentiation of human myeloblastic leukemia ML-1 cells to granulocytes, whereas treatment with ATRA alone induces practically no differentiation of these cells. To investigate the mechanism of the synergistic effect of these factors, we examined the effect of GM-CSF on retinoic acid receptors (RARs) and retinoid X receptors (RXRs) in ML-1 cells. We reveal that GM-CSF induces the expression of RARa mRNA and protein and stimulates the binding of nuclear proteins to direct repeat 5, a consensus sequence with high affinity for RAR-RXR heterodimers. Furthermore, expression of CD38 mRNA mediated through RARa is induced synergistically by treatment with ATRA 1 GM-CSF. These results suggest that GM-CSF stimulates transcriptional activity mediated via RARa in ML-1 cells. The induction of RARa by GM-CSF may therefore be a mechanism for stimulation by GM-CSF. The induction of RARa by GM-CSF was also detected in other myeloid leukemia cell lines (THP-1 and KG-1) that showed a synergistic effect similar to that seen in ML-1 cells in response to ATRA 1 GM-CSF. We also found that GM-CSF induced the expression of RARa in blood cells obtained from patients with acute myeloid leukemia. This activity of GM-CSF may serve as a useful adjunct to differentiation therapy for retinoic acid-nonresponsive leukemias.
منابع مشابه
Induction of Apoptosis on K562 Cell Line and Double Strand Breaks on Colon Cancer Cell Line Expressing High Affinity Receptor for Granulocyte Macrophage-Colony Stimulating factor (GM-CSF)
Background: Immunotoxins are comprised of both the cell targeting and the cell killing moieties. We previously established a new immunotoxin, i.e. Shiga toxin granulocyte macrophage-colony stimulating factor (StxA1-GM-CSF), comprises of catalytic domain of Stx, as a killing moiety and GM-CSF, as a cell targeting moiety. In this study, the ability of the immunotoxin to induce apoptosis and dou...
متن کاملInduction of retinoic acid receptor-alpha by granulocyte macrophage colony-stimulating factor in human myeloid leukemia cell lines.
We reported previously that treatment with all-trans retinoic acid (ATRA) and granulocyte macrophage colony-stimulating factor (GM-CSF) induces differentiation of human myeloblastic leukemia ML-1 cells to granulocytes, whereas treatment with ATRA alone induces practically no differentiation of these cells. To investigate the mechanism of the synergistic effect of these factors, we examined the ...
متن کاملRetinoids and myelomonocytic growth factors cooperatively activate RARA and induce human myeloid leukemia cell differentiation via MAP kinase pathways.
Use of all-trans-retinoic acid (ATRA) in combinatorial differentiation therapy of acute promyelocytic leukemia (APL) results in exceptional cure rates. However, potent cell differentiation effects of ATRA are so far largely restricted to this disease and long-term survival rates in non-APL acute myelogeneous leukemia (AML) remain unacceptably poor, requiring development of novel therapeutic str...
متن کاملRetinoids (all-trans and 9-cis retinoic acid) stimulate production of macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor by human bone marrow stromal cells.
Retinoic acids (RAs) exert pleiotropic effects on cellular growth and differentiation. All-trans retinoic acid (ATRA) and 9-cis retinoic acid (9-cis RA), a stereoisomer of ATRA, induce differentiation of leukemic cell lines and cells from patients with acute myelogenous leukemia (AML) in vitro. Despite information on the effects of RAs on hematopoietic cells, little is known about how RAs act o...
متن کاملAdvances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation
Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000